ARE ARYLCOPPER COMPOUNDS INTERMEDIATES IN THE EXCHANGE REACTION BETWEEN ARYL HALIDES AND COPPER(I) SALTS? Gerard van Koten^{*}, Johann T. B. H. Jastrzebski and Jan G. Noltes Institute for Organic Chemistry TNO, Utrecht, The Netherlands

(Received in WK 25 November 1975; accepted for publication 4 December 1975)

Halogen-anion exchange between aryl halides and anions of copper salts has generally been rationalized in terms of a copper-assisted nucleophilic displacement reaction involving a four-center transition state or intermediate ^{1,2}, eq. 1.

$$ArHal + XCuL_3 = \left[Ar \left[Ar \left[CuL_2\right]\right] = ArX + HalCuL_3$$
(1)

Recently, Cohen et al.³ proposed an alternative mechanism, which involves an organocopper compound, ArCu^{I} , as an intermediate⁴, eq. 2. Cohen et al. propose that the observed reaction products ArCl and ArH are formed by reaction of ArCu with CuCl₂ and by protonation of ArCu, respectively.

$$ArI + CuCl \longrightarrow ArCuICl \xrightarrow{3 CuCl} ArCu + 2 CuCl_{2} \longrightarrow 2 CuCl + ArCuCl_{2} (2)$$

$$HOBenz = CuOBenz + ArH \qquad \downarrow ArCl + CuCl$$

However, in our view this proposal does not take into account the known chemistry of arylcopper compounds⁵. (i). It must be expected that, if ArCu is an intermediate, in addition to protonation also coupling with ArI to give ArAr will take place^{5,6}. (ii). Reactions between ArCu and CuCl₂ give other products (ArH and ArAr) in addition to ArCl⁷. (iii). Arylcopper compounds are not stable under the conditions applied for these reactions and more importantly, thermolysis of ArCu generally gives rise to the formation of both ArH and ArAr^{7,8}.

We report here some results for the halogen-halogen exchange reaction of CuCl with $2-Me_2NC_6H_4I$ (RI). This system had been selected for study because the possible arylcopper intermediate (cf. eq. 2) in this reaction, RCu (R=2-Me_2NC_6H_4-) had been the subject of earlier synthetic and structural studies⁹. Relevant experimental data have been compiled in the Table.

The RI/CuCl-exchange reaction (DMF; 130° C; N₂-atmosphere) results in the formation of RCl in >90 % yield. Addition of proton donors (H₂O or HOBenz) has no effect on the amount or type of products formed. Furthermore, the reaction of RI with CuOBenz¹² gives the ester ROBenz¹³ as well as RR. Both products are absent in RI/CuCl/HOBenz reaction mix-

tures indicating that CuOBenz (cf. eq. 2) is not formed. Finally, in the RI/CuCl/Allyl bromide reaction mixture R-All¹⁰, which is readily formed by coupling of RCu with AllBr, could not be detected. Instead, competitive I/Cl, I/Br and Br/Cl exchange occurred. These results show that the arylcopper, RCu, is not an intermediate in the RI/CuCl reaction. This conclusion is further supported by the results of separate experiments carried out with the pure arylcopper compound RCu.

<u>Thermolysis</u> (DMF; 130°C; N₂-atmosphere) of RCu affords RH and RR in a 3/1 molar ratio, whereas the thermal decomposition of R₄Cu₆Cl₂ and R₄Cu₆I₂ gives RR as the major product. This difference in thermolysis behaviour will be connected with the different structures of RCu (polymeric⁹) and R₄Cu₆X₂ (discrete hexanuclear cluster ¹¹; intraaggregate coupling of two R groups can occur⁸). <u>Oxidation</u> (DMF, 25°C, N₂) of RCu and R₄Cu₆I₂ with CuCl₂ affords not only RCl but also RR. In analogy with the explanation given for the oxidation of tetranuclear (2-Me₂NCH₂C₆H₄)₄Cu₄⁹ with CuCl₂⁷ we postulate that in these reactions an innersphere-activated complex of the type R₄I₂Cu₅Cu···X···Cu^{II}X(CuX₂)_T is formed as an intermediate. Intramolecular electron-transfer from the Cu₆-cluster to the Cu^{II}X₂-polymer then leads to coupling of the bridging groups within the activated complex. <u>C-C coupling</u> with formation of RR (DMF; 130°C; N₂) takes place upon heating a mixture of RI and RCu. Coupling is accompanied by competitive thermolysis of RCu and of the intermediately formed R₄Cu₆I₂¹⁵, see eq. 3.

$$\begin{array}{c} & \text{Thermolysis} & \text{RR} + \text{RH} \\ \hline \\ & \text{RI; Coupling} & \text{RR} + \text{CuI} \\ \hline \\ & \text{CuI: Complex-} \\ & \text{formation} & \text{R}_4\text{Cu}_6\text{I}_2 & \text{Thermolysis} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{RR} + \text{RH} \\ \hline \end{array} \\ \begin{array}{c} \text{(3)} \\ \text{RR} + \text{RH} \\ \hline \end{array} \\ \end{array}$$

Our experiments with pure RCu show that the formation of RR must be expected if RCu is an intermediate in the RI/CuCl exchange reaction.

ArH, detected among the reaction products³, need not be formed by protolysis of an organocopper intermediate. A possible route for the exchange reaction involves the interaction of ArHal with $(CuX)_{n}(DMF)_{m}$ -oligomeric species¹⁶. Single electron-transfer leads via a transient species of the type Ar^{cuII}XHal·(CuX)_{n-1}(DMF)_m to the exchanged product ArX and CuHal·(CuX)_{n-1}(DMF)_m. In the presence of proton-active compounds, e.g. BenzOH, competitive proton transfer from coordinated BenzOH to Ar^{*} in the bridged intermediate I

$$\begin{array}{ccc} \operatorname{Ar}^{\bullet}\operatorname{Cu}^{II}X\operatorname{Hal}^{\bullet}(\operatorname{Cu}X)_{n-1}(\operatorname{DMF})_{m-1} & \longrightarrow & \operatorname{Ar}^{\bullet}\operatorname{--H}^{\bullet}\operatorname{--O}\operatorname{--Cu}^{II}X\operatorname{Hal}^{\bullet}(\operatorname{Cu}X)_{n-1}(\operatorname{DMF})_{m-1} \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\$$

(cf. ref. 17) then results in the formation of ArH and Cu^{II}XHal·Cu^{II}XOBenz·(CuX)_{n-2}(DMF)_m.

Financial support by Borg-Warner Chemicals, Borg-Warner Corporation and stimulating discussions with Dr. M. S. Cohen are gratefully acknowledged.

Reactants	Reaction time (h)	Products ^a				
		RH .	RCI	RRb	RX ^b	
Exchange reaction (DM	F; 130 [°] C)					
RI/2 CuCl		≤0 . 05 ^c	0.93	-	_	
RI/1.6 CuCl/1 H2O		≤0,05	0.94			
$RI/2CuCl/\frac{1}{2}HOBenz^d$	3	≤0.02	0.90	-	X=OBena —	
RI/2 CuCl/ ¹ / ₂ AllBr ^e	4	≤0.02	0.71	_	X = Br 0.10	X = A11
RI/CuOBenz ^{f,g}		0.16	-	0.20	X = OBenz 0.10	
Thermal decomposition	of RCu (DMI	F; 130 [°] C)				
R C u	h	0.6	_	0.4		
R ₄ Cu ₆ Cl ₂	<2	0.4	-	3.6		
R ₄ Cu ₆ I ⁱ ₂		0.2		3.8		
Oxidation of RCu with (Cu ^{II} X ₂ (DMF;	25 ⁰ C)				
RCu to 4CuCl^{j}	-	0,03	0.22	0.42		
- R ₄ Cu ₂ L ₂ to 4 CuCl ₂ ^j		<0.01	0.04	0.58	X = I 0.05	
RI to CuCl ₂ ^k		_		_	X = I 0.93	
CuCl ₂ to RCu ¹		0.13	0.10	0.74		
Coupling of RCu with R	<u>I (DMF;</u> 130 ^C	<u>'c)</u>				
RCu/1.25 RI ^m	3/4	0,08	_	1.30	X = I 0,83	
RCu/1.3 RI	4	0.24 ^{n,0}	_	1.88	X = I 0.40	

Table. Experimental data¹³ concerning the exchange reaction of RI ($R = 2 - Me_2NC_{6}H_4$) with CuCl and the reactivity of the possible organocopper intermediate

^aMol. R-. ^bNot detected unless indicated otherwise. ^cDirectly present after mixing of the reagents (from NMR experiment in DMF-d₇). ^dAmount of benzoic acid, BenzOH, remained unchanged. ^eAfter 3 h; 0.28 RBr, 0.54 RCl, 0.07 RI. ^fPure CuOBenz. ^g0.47 RI recovered. ^hAfter 4 h. After ¹/₂ h 72 % of the total amount of RH was detected. ⁱClean decomposition. ^jReversed addition gave the same results. ^kAt 130° no RI could be recovered. ^lA yellow precipitate was isolated which analysed for 2.3 CuCl-DMF. ^mNMR experiment using DMF-d₇. ⁿPartly due to hydrolysis of RCu. ^oSee ref. 15.

References and Notes

- 1.(a) M. Nilsson, Acta Chem. Scand., 12 (1958) 537; W. B. Hardy and R. B. Fortenbaugh,
 J. Amer. Chem. Soc., 80 (1958) 1716; B. Liedholm, Acta Chem. Scand., 25 (1971) 113.
- R. G. R. Bacon and H. A. O. Hill, Quart. Rev., 19 (1965) 119; J. Chem. Soc. C, (1969) 308, 1978; J. Burdon, P. L. Coe, C. R. Marsh and J. C. Tatlow, J. Chem. Soc., Perkin I, (1972) 763.
- T. Cohen, J. Wood and A. G. Dietz Jr., Tetrahedron Lett., 40 (1974) 3555; T. Cohen and H. A. Lewin, J. Amer. Chem. Soc., 88 (1966) 4521.
- 4. This scheme suggests that ArCu^{III} is rather stable, whereas ArCu^{III}Cl₂ and ArCu^{III}Cl₁ are transient intermediates.
- 5. Cf. refs. cited in, A. E. Jukes, in F. G. A. Stone and R. West (Eds.), Advances in Organometallic Chemistry, Vol. 12, The Organic Chemistry of Copper, 1974, p. 215.
- 6. E.g. M. Nilsson and O. Wennerström, Acta Chem. Scand., 24 (1970) 482.
- 7. G. van Koten, Ph. D. Thesis, Utrecht, 1974; G. van Koten and J. G. Noltes, J. Organometal. Chem., 84 (1975) 419.
- 8. G. van Koten and J. G. Noltes, J. Chem. Soc., Chem. Commun., (1974) 575.
- 9. G. van Koten and J. G. Noltes, J. Organometal. Chem., 84 (1975) 129; 85 (1975) 105.
- 2-Me₂NC₆H₄CH₂CH=CH₂; b.p. 60-61^o C/5 mm; NMR (CCl₄, 8 ppm), 2.60 (NMe₂, 6 H, s),
 3.41 (PhCH₂-, 2 H, m), 5.02 (=CH₂, 2 H, m), 5.7-6.1 (-CH=, 1 H, m), 6.8-7.2 (PhH, 4 H, m).
- J. M. Guss, R. Mason, K. M. Thomas, G. van Koten and J. G. Noltes, J. Organometal. Chem., 40 (1972) C 79; ibid. (1975) to be published.
- D. A. Edwards and R. Richards, J. Chem. Soc., Dalton Trans., (1973) 2463; T. Ogura and Q. Fernando, Inorg. Chem., 12 (1973) 2611.
- 13. The reactions were carried out in an N₂-atmosphere. Reaction products were identified by comparison with pure samples using NMR, IR and GS-MS techniques.
- 14. RI has been detected in the reaction mixture which indicates that also intraaggregate trapping of R[•] by a Cu_n-I bond takes place^{7,8}.
- 15. In refluxing benzene $R_4Cu_6I_2$ and RR are formed. Both RCu and $R_4Cu_6I_2$ are stable at 80°C 6 RCu + 6 RI $\xrightarrow{80^\circ C}_{C_6H_6}$ $R_4Cu_6I_2$ + 2 RR + 4 RI
- 16. Cu^I halide complexes have often polynuclear structures in which the halide anion bridges two (e.g. L₂CuX₂CuL) or three Cu atoms (e.g. complexes with "step" or "cubane" Cu₄X₄ skeletons); cf., M. R. Churchill and K. L. Kalra, Inorg. Chem., 13 (1974) 1899.
- 17. Cf. A. H. Lewin, N. C. Peterson and R. J. Michl, J. Org. Chem., 39 (1974) 2747.